

## POWER ELECTRONICS I

## AC-DC Converters

## Three-Phase Rectifiers

Dr. Islam Mohamed

Electrical Engineering Department Shoubra Faculty of Engineering, Benha University Islam.ahmed@fen.bu.edu.eg

## Questions Lecture Four

$\mathrm{Q}_{1}$ ) what are the rating values of the Thyrisors in the converter?
$Q_{2}$ ) Draw a relation between the rectification efficiency and firing angles for R -load and highly inductive loads.
$Q_{3}$ ) Draw a relation between the average output voltage and firing angles for R -load and highly inductive loads.
$\mathrm{Q}_{4}$ ) Draw the load voltage and current waveforms if a freewheeling diode is connected incase RL-loads.
$\mathrm{Q}_{5}$ ) Draw the load voltage and current waveforms at for RL-loads if T2, T4, T6 are replaced with diodes At $\alpha=30,60,90$

## Three-phase rectifier Plan

Three-phase rectifier circuits


## Lecture three: Three-phase half-wave rectifiers with noni deal supply

- Circuit diagram
- Components
- Output waveforms with highly inductive load.
- Analysis of three-phase half wave controlled circuit
- Analysis of three-phase half wave uncontrolled circuit
- Summery
- Questions


## Construction

## Power circuits and its components



## Operation

## Output Voltage waveforms

Half-wave

## Full-wave



## Operation

## Currents waveforms

Half-wave





## Analysis: Half-wave rectifier

## 1- Supply voltages:

$V_{a}(\omega \mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}), V_{b}(\omega \mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}-2 \pi / 3), V_{c}(\omega \mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin$

## 2- Output Load voltage

During the overlap period $0: \mu$

$$
\begin{aligned}
& v_{a n}=L_{s} \frac{d i_{a}}{d t}+v_{o} \\
& v_{b n}=L_{s} \frac{d i_{b}}{d t}+v_{o}
\end{aligned}
$$

Assuming that $I_{d}$ remains constant during the overlap time, so

$$
i_{a}+i_{b}=\bar{I}_{d}
$$

Differentiate both sides

$$
\frac{d i_{a}}{d t}=-\frac{d i_{b}}{d t}
$$

Adding the voltage equations and canceling the equal but opposite terms,
$v_{o}=\frac{v_{a n}+v_{b n}}{2}$, during the overlap process.




## Analysis: Half-wave rectifier

$V_{a}(\omega \mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}), V_{b}(\omega \mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}-2 \pi / 3), V_{c}(\omega \mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}-4 \pi$
The part of the positive voltage pulse lost due to overlap starting from angle $\omega \mathrm{t}=\pi / 6$ is given by:

$$
\begin{aligned}
& v_{b n}-\frac{v_{b n}+v_{a n}}{2} \\
= & \frac{v_{b n}-v_{a n}}{2}=L_{s} \frac{d i}{d t}
\end{aligned}
$$

The area (shaded) inside the voltage pulse lost due to overlap is given by:

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{6}+\mu}\left(\frac{v_{b n}-v_{a n}}{2}\right) d(\omega t)=\omega L_{s} \int_{0}^{I_{d}} d i=\omega L_{s} I_{d}
$$

Note that $\left(\mathrm{v}_{\mathrm{b}}-\mathrm{v}_{\mathrm{a}}\right)$ is the line-line voltage $\mathrm{v}_{\mathrm{ba}}$. The integral on the right hand side by shifting the origin by $\pi / 6$ to the left. Thus




## Analysis: Half-wave rectifier

$V_{a}(\omega \mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}), V_{b}(\omega \mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}-2 \pi / 3), V_{c}(\omega \mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}-4 \pi$

$$
\begin{gathered}
\int_{0}^{\mu} \frac{\sqrt{3} V_{\max }}{2} \sin \omega t d(\omega t)=\omega L_{s} I_{d} \\
\quad \therefore 1-\cos \mu=\frac{2 \omega L_{s}}{V_{\max l-l}} I_{d}
\end{gathered}
$$


where $V_{\text {max } H}=\sqrt{ } 3 V_{\text {max }}$

$$
\cos \mu=1-\frac{2 \omega L_{s}^{l}}{V_{m \dot{x}+1-l}^{l}} I_{d}
$$

The dc output voltage




## Analysis: Half-wave Controlled rectifier

1- The Load voltage incase HWCR ( $(\cdot)$ :
$V_{a}(\omega \mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}), V_{b}(\omega \mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}-2 \pi / 3), V_{c}(\omega \mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}-4 \pi$

$$
P=
$$

$$
\operatorname{Cos}(\alpha+\mu)=\operatorname{Cos}(\alpha)-\frac{2 \omega L_{s}}{V_{\max l-l}} I_{d}
$$

$$
\mu=\alpha-\cos ^{-1}\left(\operatorname{Cos}(\alpha)-\frac{2 \omega L_{s}}{V_{\max 1-l}} I_{d}\right)
$$

The dc output voltage

$$
\operatorname{Cos}(\alpha)
$$




## Analysis: Half-wave Controlled rectifier

## Regulation characteristic of the rectifier



## Analysis: Full-wave rectifier

## 1- Supply voltages:

$V_{a}(\omega \mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}), V_{b}(\omega \mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}-2 \pi / 3), V_{c}(\omega \mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}-4 \pi / 3)$
During the overlap period $0: \mu$

$$
\begin{aligned}
& v_{a v x}=L_{s} \frac{d i_{a x}}{d t}+v_{o} \\
& v_{b w}=L_{s} \frac{d i_{b}}{d t}+v_{o}
\end{aligned}
$$

when $D_{1}$ and $D_{3}$ are in overlap due to the source inductance $L_{s}$ and where all voltages are with respec the fictitious neutral point. Vo

$$
i_{a}+i_{b}=\bar{I}_{d},
$$

Differentiate both sides

$$
\frac{d i_{a}}{d t}=-\frac{d i_{b}}{d t} .
$$

Adding the voltage equations and canceling th ${ }^{i_{D_{1}}}$ equal but opposite terms,
$v_{o}=\frac{v_{a n}+v_{b n}}{2}$, during the overlap pros ${ }^{i_{D_{3}}}$


## Analysis: Full-wave rectifier

## 1- Supply voltages:

$V_{a}(\omega \mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}), V_{b}(\omega \mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}-2 \pi / 3), V_{c}(\omega \mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}-4 \pi / 3)$
During the overlap period $0: \mu$

$$
v_{b}-\frac{v_{b}+v_{a}}{2}=\frac{v_{b}-v_{a}}{2}=L_{s} \frac{d i}{d t}
$$

Integrating for the duration of the overlap

$$
\begin{gathered}
\int_{\frac{\pi}{6}}^{\frac{\pi}{6}+\mu}\left(\frac{v_{b}-v_{a}}{2}\right) d(\omega t)=\omega L_{s} \int_{0}^{I_{d}} d i \\
\int_{0}^{\mu} \frac{\sqrt{3} V_{\max }}{2} \sin \omega t d(\omega t)=\omega L_{s} I_{d}
\end{gathered}
$$

$$
\therefore l-\cos \mu=\frac{2 \omega L_{s}}{V_{\max l-l}} I_{d}
$$

$$
\cos \mu=1-\frac{2 \omega L_{s}}{V_{\max l-l}} I_{d}
$$



## Analysis: Full-wave rectifier

## 1- Supply voltages:

$V_{a}(\omega \mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}), V_{b}(\omega \mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}-2 \pi / 3), V_{c}(\omega \mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t}-4 \pi / 3)$
The dc output voltage $\mathrm{V}_{\mathrm{d}}$ is given by


$$
V_{d}=\frac{3 V_{\max l-l}}{\pi}-\frac{1}{\pi / 3} \int_{0}^{\mu} \frac{V_{\max l-l}}{2} \sin \omega t d(\omega t)
$$

as

$$
\int_{0}^{\mu} \frac{\sqrt{3} V_{\max }}{2} \sin \omega t d(\omega t)=\omega L_{s} I_{d}
$$

$$
\begin{aligned}
V_{d} & =\frac{3 V_{\max l-l}}{\pi}-\frac{3 \omega L_{s}}{\pi} I_{d} \\
V_{d} & =\frac{3 V_{\max l-l}}{\pi}\left(1-\frac{\omega L_{s}}{V_{\max l-l}} I_{d}\right)
\end{aligned}
$$

$\int_{0}^{\mu} \frac{\sqrt{3} V_{\max }}{2} \sin \omega t d(\omega t)=\omega L_{s} I_{d}$


## Analysis: Full-wave rectifier

## Regulation characteristic of the rectifier



## Questions

$Q_{1}$ ) what are the effect of source inductance on the load voltage?
$\mathrm{Q}_{2}$ ) Deduce the average load voltage of three-phase full wave controlled rectifier with nonideal supply.
$\mathrm{Q}_{3}$ ) What is the control range of $\alpha$ in the pervious case studies?

