

POWER ELECTRONICS I

AC-DC Converters

Three-Phase Rectifiers

Dr. Islam Mohamed

Electrical Engineering Department Shoubra Faculty of Engineering, Benha University <u>Islam.ahmed@fen.bu.edu.eg</u>

Questions Lecture Four

 Q_1) what are the rating values of the Thyrisors in the converter?

- Q₂) Draw a relation between the rectification efficiency and firing angles for R-load and highly inductive loads.
- Q₃) Draw a relation between the average output voltage and firing angles for R-load and highly inductive loads.
- Q₄) Draw the load voltage and current waveforms if a freewheeling diode is connected incase RL-loads.
- Q₅) Draw the load voltage and current waveforms at for RL-loads if T2, T4, T6 are replaced with diodes At α = 30,60,90

Three-phase rectifier Plan

Lecture three: Three-phase half-wave rectifiers with noni deal supply

Construction

Operation

Output Voltage waveforms

Half-wave

0.025

0.025

Operation

Analysis: Half-wave rectifier

1- Supply voltages:

 $V_a(\omega t) = V_m \sin(\omega t), V_b(\omega t) = V_m \sin(\omega t - 2\pi/3), V_c(\omega t) = V_m \sin(\omega t - 4\pi/3)$

2- Output Load voltage

During the overlap period 0:µ

$$v_{an} = L_s \frac{di_a}{dt} + v_o$$

$$v_{bn} = L_s \, \frac{di_b}{dt} + v_o$$

Assuming that I_d remains constant during the overlap time, so $i_a + i_b = I_d$.

Differentiate both sides

$$\frac{di_a}{dt} = -\frac{di_b}{dt}$$

Adding the voltage equations and canceling the equal but opposite terms,

 $v_o = \frac{v_{an} + v_{bn}}{2}$, during the overlap process.

Analysis: Half-wave rectifier

 $V_a(\omega t) = V_m \sin(\omega t), V_b(\omega t) = V_m \sin(\omega t - 2\pi/3), V_c(\omega t) = V_m \sin(\omega t - 4\pi/3)$

The part of the positive voltage pulse lost due to overlap starting from angle $\omega t = \pi/6$ is given by:

$$v_{bn} - \frac{v_{bn} + v_{an}}{2}$$
$$= \frac{v_{bn} - v_{an}}{2} = L_s \frac{di}{dt}$$

2

The area (shaded) inside the voltage pulse lost due to overlap is given by:

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{6}+\mu} \left(\frac{v_{bn}-v_{an}}{2}\right) d(\omega t) = \omega L_s \int_0^{I_d} dt = \omega L_s I_d$$

Note that $(v_b - v_a)$ is the line-line voltage v_{ba} . The integral on the right hand side by shifting the origin by $\pi/6$ to the left. Thus

Analysis: Half-wave rectifier

 $V_a (\omega t) = V_m \sin(\omega t), V_b (\omega t) = V_m \sin(\omega t - 2\pi/3), V_c (\omega t) = V_m \sin(\omega t - 4\pi/3)$

Analysis: Half-wave Controlled rectifier

1- Supply voltages:

 $V_a(\omega t) = V_m \sin(\omega t), V_b(\omega t) = V_m \sin(\omega t - 2\pi/3), V_c(\omega t) = V_m \sin(\omega t - 4\pi/3)$

During the overlap period $0:\mu$

$$v_{an} = L_s \frac{di_a}{dt} + v_o$$

$$v_{bn} = L_s \, \frac{di_b}{dt} + v_o$$

when D_1 and D_3 are in overlap due to the source inductance L_s and where all voltages are with respect the fictitious neutral point. Vo

$$i_a + i_b = I_d$$

Differentiate both sides

$$\frac{di_a}{dt} = -\frac{di_b}{dt}$$

Adding the voltage equations and canceling th equal but opposite terms,

$$v_o = \frac{v_{an} + v_{bn}}{2}$$
, during the overlap prov

1- Supply voltages:

 $V_a(\omega t) = V_m \sin(\omega t), V_b(\omega t) = V_m \sin(\omega t - 2\pi/3), V_c(\omega t) = V_m \sin(\omega t - 4\pi/3)$ During the overlap period 0:µ + $v_{L_a} = \Delta D_1 \Delta D_3$

$$v_b - \frac{v_b + v_a}{2} = \frac{v_b - v_a}{2} = L_s \frac{di}{dt}$$

Integrating for the duration of the overlap

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{6}+\mu} \left(\frac{v_b - v_a}{2}\right) d(\omega t) = \omega L_s \int_0^{I_d} dt$$
$$\int_0^{\mu} \frac{\sqrt{3}V_{max}}{2} \sin \omega t d(\omega t) = \omega L_s I_d$$

$$\therefore 1 - \cos \mu = \frac{2\omega L_s}{V_{max \, l-l}} I_d$$
Compare
with HWI
$$\cos \mu = 1 - \frac{2\omega L_s}{V_{max \, l-l}} I_d$$

Regulation characteristic of the rectifier

Questions

Q₁) what are the effect of source inductance on the load voltage?

 Q_2) Deduce the average load voltage of three-phase full wave controlled rectifier with nonideal supply.

 Q_3) What is the control range of α in the pervious case studies?